

Getting started with HeapAgent 10
if you’re using
Microsoft Visual Studio

Read this first.
Contents	
Setting up HeapAgent and your application ...3

The basics ...3
Other options ..3
Setting up your application for HeapAgent if you’re using VC++ version 7 or later3
Configuring HeapAgent for your applications (for all VC++ compilers) ..4

GUI applications ...4
Console applications ...4
Configuring HeapAgent ..6
When HeapAgent DLL auto-loading takes effect ...7

Running your application in HeapAgent ...8
Starting your application in HeapAgent ...9
Attaching HeapAgent to your application ..10
Detaching a program from HeapAgent ..10
Debugging multiple programs, processes, or instances simultaneously ...10

Using HeapAgent with DLLs ..11
Handling DLLs that share heap memory with your EXE...11
Using HeapAgent with OCXs and dynamically loaded DLLs ...12
Specifying HeapAgent configuration for DLL components ..13
First-chance exceptions reported by your debugger ...13

SmartHeap and HeapAgent are trademarks of Compuware Corporation.
Microsoft and Windows are registered trademarks and Visual C++, Win95, Win32s, and Windows NT are
trademarks of Microsoft Corporation.
All other trademarks are the property of their respective holders.

Copyright © 1994-2011 Compuware Corporation
All rights reserved.

Setting up HeapAgent and your application
If you’re developing your application with Microsoft Visual C++ for 32-bit Windows, here’s how
you get started with HeapAgent.

The basics
To quickly get started debugging your application with HeapAgent:

1. Compile your application with Visual C++ Program Database (PDB) debugging information
and link it to the HeapAgent library (shdw32mtd.lib)

2. Use the HeapAgent Application Setup utility to configure HeapAgent for your application.

3. Run your program normally, and HeapAgent will be loaded automatically.

HeapAgent then replaces your application’s heap and automatically detects a wide variety of heap
errors.

Other options
HeapAgent includes several other options that you may find useful:

• When you start your application in HeapAgent, you can have HeapAgent start a Visual
Studio debugger session at the same time. You can then use Visual Studio to debug your
source code while you simultaneously use HeapAgent to detect and report heap errors. See
“Running your application in HeapAgent,” later in this booklet.

• If you want to call HeapAgent APIs from your application, or if you can’t or don’t want to
compile with Visual C++ PDB debugging information, you can include a HeapAgent header
file, heapagnt.h, and compile your application with HeapAgent debugging macros.
Include heapagnt.h in each of your source files that calls HeapAgent APIs. Then define
the macro constant MEM_DEBUG, as described in step 6 of the next procedure, “Setting up the
Visual C++ project file.”

Setting up your application for HeapAgent
To set up a Visual C++ project to work with HeapAgent:

1. Choose Open from the Visual C++ File menu, and open your application’s project file.

2. Open the project’s Property Pages dialog box.

3. In the Configuration drop-down list box, choose “Debug,” if it isn’t chosen already.

4. Click the C/C++ folder and select the General property page.

5. Under “Debug Information Format” choose Program database for edit and continue.
6. If your application doesn’t call HeapAgent APIs, you can skip this step.

Still at the C/C++ folder, in the Preprocessor property page on the Preprocessor
Definitions line, add:

 MEM_DEBUG=1

7. Click the Linker folder and select the Debugging property page.

8. Set Generate Debug Info to “Yes”.

9. Still in the linker folder, select the Input property page.

10. Specify the HeapAgent libraries that you want to link with. At the beginning of the

Configuring HeapAgent for your applications (for all Visual Studio compilers)

“Additional Dependencies” line, before any other object files or libraries, enter the
appropriate libraries:

 Link with these libraries
If you’re debugging (in the order shown)
An EXE or DLL without MFC, with non-Debug MFC,

or with the Debug MFC DLL shdw32mtd.lib

An EXE or DLL with Debug MFC statically linked shmfc4md32.lib,
 shdw32mtd.lib

Note The MFC integration libraries shmfc4md32.lib is in the HeapAgent lib
directory

Choose OK to save changes to the property pages.

Configuring HeapAgent for your applications (for all Visual
Studio compilers)
The HeapAgent Application Setup program lets you specify how HeapAgent and your application
or applications interact, including whether HeapAgent starts automatically when you start your
application and whether HeapAgent should automatically patch all of the EXEs and DLLs in your
application.

You can change the configuration for an application at any time; you should do so whenever you
add a DLL to your application. This ensures that HeapAgent always patches the correct set of
DLLs when your application runs.

Important! HeapAgent Application Setup stores its settings in the Windows Registry under the
key HKEY_LOCAL_MACHINE\Software\MicroQuill\HeapAgent. Beginning with
HeapAgent 10, these settings are also stored in
HKEY_CURRENT_USER\Software\MicroQuill\HeapAgent.

Note Prior to HeapAgent 10, these settings were stored HKEY_LOCAL_MACHINE only. This
could caused unexpected behavior when the user did not have permission to access HKLM.

Also note HeapAgent’s “patching” does not affect any of your application’s files on disk. The
patching occurs at runtime during process initialization, much as a debugger inserts breakpoint
instructions in your application when you run under a debugger.

GUI applications

If you’re developing a GUI app, you can set up an application so that HeapAgent automatically
loads any time you run the application. You can run the application from anywhere: the
Microsoft Visual Studio debugger, the command line, Windows Explorer, or the Windows shell.

If you don’t want your application to load the HeapAgent DLL automatically, you can start
HeapAgent and then run the application from within HeapAgent. For more information, see
“Running your application in HeapAgent,” later in this booklet.

Console applications

For console apps (apps that do not create windows) you must relink with the HeapAgent Library
in order for HeapAgent to load automatically each time you run your app. You can use
HeapAgent Application Setup to control:
• Whether the HeapAgent user interface is automatically launched when your application starts

(if you link your app with the HeapAgent Library).

• Whether HeapAgent patches the heap routines in your application’s EXE and in each
individual DLL in your application.

Configuring HeapAgent for your applications (for all Visual Studio compilers)

Configuring HeapAgent

To configure HeapAgent settings for one or more applications:

1. Run HeapAgent Application Setup.

2. At Application Name, enter the full path of the EXE. If you don’t remember the name or
location of an EXE, choose the Browse button, and HeapAgent displays the Browse dialog
box.

Or

To change the default settings for all applications not listed, choose <Global default
settings>.

Note Most of the settings in the Edit dialog box for the app name “<Global default
settings>” affect only apps not listed in the Application Setup listbox. However, the
Auto-Load HeapAgent DLL checkbox for <Global default settings> affects apps
that are listed here. Unchecking Auto-Load HeapAgent DLL for <Global default
settings> disables auto-loading for all applications.

3. Choose the Add button, and the application is added to the list.

4. Choose the Edit button, and the Edit dialog box appears.

5. Specify the settings for this application.

Auto-Load HeapAgent DLL (GUI apps only)
Check this checkbox if you want HeapAgent to load automatically whenever you run this
application. HeapAgent will load automatically regardless of whether you run the
application from the command line, from the Microsoft Visual Studio debugger, from
Windows Explorer, or from the Windows shell.

Note This checkbox is only available for GUI apps and only if you’re using Microsoft
Visual C++. To debug a console application with HeapAgent, you must start it from the
HeapAgent user interface or link the application with the HeapAgent Library. For more
information, see “Running your application in HeapAgent,” later in this booklet.

For information on exactly when the HeapAgent DLL is loaded, see the next topic,
“When HeapAgent DLL auto-loading takes effect.”

Auto-Launch HeapAgent User Interface
Check this checkbox if you want the HeapAgent user interface to open and minimize as
an icon when your application starts. The HeapAgent user interface allows you to
browse heap data, control debugging settings, and diagnose heap errors.
If you don’t check this checkbox, HeapAgent still performs full error detection. In
addition, when HeapAgent detects an error, you can launch the HeapAgent user interface
from the Error Report dialog box. Just choose one of the browser buttons, and the user
interface launches to display the corresponding browser.

Patch Heap Routines in this Process
Uncheck this checkbox to prevent HeapAgent from patching any of the heap routines in
your application, including the EXE and all DLLs. You should normally leave this
checkbox checked. If you disable HeapAgent patching, you must link the HeapAgent
Library with the EXE and with each DLL in your application. In addition, the Auto-
Load HeapAgent DLL feature won’t work if you disable patching, because HeapAgent
can only detect errors if it replaces the heap in your application (either by patching or by
being linked directly into your application).

Important! For HeapAgent to automatically patch heap routines in your EXE or DLLs,
they must either be linked with Microsoft Visual C++ PDB debugging information, or
they must be linked with the DLL version of the CRT. For more information, see
“Setting up HeapAgent and your application,” at the beginning of this booklet.

Patch Heap Routines in Main EXE
Uncheck this checkbox to prevent HeapAgent from patching any of the heap routines in
your application’s EXE. HeapAgent will still patch heap routines in the DLLs you
specify in the Patch Heap Routines in These DLLs list. You should normally leave this
checkbox checked. One reason to disable patching in an EXE is if you’re implementing
a DLL and you want to perform error checking in the DLL but not in the DLL’s client
EXE.

Patch GlobalAlloc/LocalAlloc/HeapAlloc
Check this checkbox to enable HeapAgent patching of operating system heap APIs. By
default, HeapAgent does not patch these APIs.

Name of DLL to add
If your application dynamically loads one or more DLLs with LoadLibrary, and if you
do want HeapAgent to patch these DLLs, enter each DLL name in this edit line and
choose the Add DLL button to add the DLL name to the listbox below. You should then
use the left or right arrow buttons to move the DLL name to the appropriate list to patch
or not patch the DLL.

Note By default, HeapAgent will patch all DLLs that are not present on the Do NOT
Patch Heap Routines in These DLLs list except dynamically loaded DLLs loaded with
LoadLibrary.. In most cases, therefore, there is no need to add the names of DLLs that
you want HeapAgent to patch.

Patch Heap Routines in These DLLs/
Do NOT Patch Heap Routines in These DLLs

These two listboxes list all of the DLLs that your application is linked with, including the
DLLs that those DLLs link with:
• The left listbox lists the DLLs that you want HeapAgent to check for memory errors.

For each of these DLLs, HeapAgent will replace your memory allocator’s heap
routines with its own debugging routines.

• The right listbox lists the DLLs that you don’t want HeapAgent to check for memory
errors. By default, this listbox contains only system DLLs.

Normally, you should have HeapAgent patch all the non-system DLLs that are part of
your application, including compiler class library and C runtime library DLLs. DLLs
that share heap memory with your EXE or with other DLLs must be in the left listbox.
To move a DLL between the listboxes, highlight it and choose the appropriate arrow
button.

6. Choose OK to save your changes.

7. To add more applications, repeat steps 2 through 6.

8. To save your changes, choose Save from the File menu.

When HeapAgent DLL auto-loading takes effect

Note: This section assumes that your application is not explicitly linked to the
HeapAgent library shdw32mtd.lib. Historically, until the release of Visual C++ 7, this
explicit linking was a seldom-used option. Now, it is the norm. If shdw32mtd.lib is not
linked in, then HeapAgent will still detect errors in the application, but it will not be able
to report file & line numbers for those errors; instead, you will get raw addresses

When you add an application name to the list in HeapAgent Application Setup, the HeapAgent
DLL is automatically loaded by the operating system whenever you run the application (unless
you turn auto-loading off either globally or for this particular application). However, the

Configuring HeapAgent for your applications (for all Visual Studio compilers)

operating system does not actually load the HeapAgent DLL until your application makes certain
Windows API calls.

In most cases the HeapAgent DLL is loaded at the first call your application makes to any
function in user32.dll. Under Windows 95/98, the HeapAgent DLL is loaded when your
application creates its first top-level window. Most GUI apps make many calls to user32.dll
and create their first window during initialization, but sometimes a few memory allocations will
occur before this. HeapAgent handles this case just fine, but will not perform any memory
checking on allocations created before the HeapAgent DLL has loaded.

If your app creates many allocations before calling user32.dll (or before creating its first
window), or if your app is a console app that doesn’t call user32.dll at all, you can force the
HeapAgent DLL to load earlier:

• Link your application with the HeapAgent library, shdw32mtd.lib, as described under
“Setting up your application for HeapAgent,” earlier in this section.

Or

• Place a call to a user32.dll function, such as IsWindow, before your first memory
allocation.

Running your application in HeapAgent
Once you’ve compiled your application with Visual C++ PDB debugging information and linked
it to the HeapAgent library, you can run the application under HeapAgent for debugging.

If you’ve added your application to HeapAgent Application Setup or linked it with the HeapAgent
Library, no further action is required to use HeapAgent — just run your application normally from
your favorite debugger, from the Windows shell, or from the command line, and HeapAgent will
inform you whenever it detects an error.

Important! If your application contains DLLs, and particularly if it loads DLLs with
LoadLibrary, please see, “Using HeapAgent with DLLs,” later in this booklet.

Note You can also attach HeapAgent to a running application, or you can set up your application
so it starts an instance of HeapAgent each time you start the application. For more information,
see “Attaching HeapAgent to your application,” later in this section.

Starting your application in HeapAgent
To start an application from within HeapAgent:

 1. Choose Open from the File menu, or choose the Open button in the toolbar. The Open dialog
box appears.

2. Choose the Browse button to locate the executable that you want to debug, and choose OK.

3. (optional) Specify any command-line parameters that you want HeapAgent to pass to your
application, and enter the application’s working directory.

4. If you haven’t already configured this application in the HeapAgent Application Setup
program, do so now by choosing the Setup App button.

For more information on HeapAgent Application Setup, see “Configuring HeapAgent for your
application,” earlier in this booklet.

5. When you’re finished, choose OK.

6. (optional) Change the debugging settings, agents, and error reporting settings that you want
to be in effect while your application runs.

 For more information on debugging settings and agents, see Chapter 5, “Debugging with
HeapAgent,” in the HeapAgent User’s Guide. For more information on error report settings,
see “Specifying where to send error reports,” in Chapter 7, “Working with error reports.”

 8. Choose Run from the File menu, or choose the Run button in the toolbar.

 HeapAgent starts your application and (optionally) starts a Visual C++ debugger session.

Attaching HeapAgent to your application

Attaching HeapAgent to your application
You can debug an application with HeapAgent without starting it from the HeapAgent user
interface. Just link the application with the HeapAgent Library as described in step 8 of “Setting
up the Visual C++ project file,” under “Setting up your application for HeapAgent,” at the
beginning of this booklet. When you start an application that’s linked with the HeapAgent
Library, HeapAgent automatically launches, attaches to the application, and minimizes as an icon
each time you start your application.

If you don’t want a copy of HeapAgent to be opened each time you start your application, you can
prevent this by unchecking the Auto-Launch HeapAgent User Interface checkbox for the
application in the Application Setup Edit dialog box. For more information, see “Configuring
HeapAgent for your application,” earlier in this booklet.

To attach HeapAgent to your application at any time while the application is running:

1. Choose Attach Running Program from the File menu, and the Attach Running Program
dialog box appears.

This dialog box lists only programs that are currently running with HeapAgent loaded because
they’ve been added to HeapAgent Application Setup, were started from the HeapAgent user
interface, or have been linked with the HeapAgent Library, as described in “Setting up your
application for HeapAgent,” at the beginning of this booklet.

2. Choose the program that you want to debug, and choose OK.

Detaching a program from HeapAgent
If you’re done working with a particular program but you’re not done working in HeapAgent, you
can detach the program from HeapAgent. The program isn’t terminated, but its connection with
HeapAgent is, and all data windows in HeapAgent that contain data specific to that program are
closed. You can subsequently attach the current HeapAgent session to a different program.

To detach a running program from HeapAgent:

♦ Choose Detach Program from the File menu.

Note If you close a program that is attached to HeapAgent, it’s automatically detached from that
HeapAgent session. If you subsequently run your program again, it will attach to the available
HeapAgent session rather than starting a new one. You must explicitly close HeapAgent when
you’re done with a debugging session.

Debugging multiple programs, processes, or instances
simultaneously
4If the application you’re debugging has multiple tasks or processes, you can debug all of these
tasks or processes at once. Just run an instance of HeapAgent for each executable instance, and
then start or attach to the executable as described in the preceding sections.

HeapAgent maintains debugging and error reporting settings separately for each executable that
you’re debugging. These settings are stored in a file that has the same name and location as your
program’s EXE file and has an extension of .hpa. For more information, see Chapter 8,
“Changing and Saving Settings,” in the HeapAgent User’s Guide.

If your application is linked with the HeapAgent Library or if you’ve configured HeapAgent to
load automatically with your application, an instance of HeapAgent starts automatically each time
the application starts. If you’d like, you can prevent having separate HeapAgent sessions for each
of your processes or tasks. Just uncheck the Auto-Launch HeapAgent User Interface checkbox
for the application in the Application Setup Edit dialog box. For more information, see
“Configuring HeapAgent for your application,” earlier in this booklet.

If you turn off the HeapAgent auto-launch feature for an application, you can manually start a
single HeapAgent session and then attach HeapAgent to the particular process where you want to
browse heap data. At any time, you can attach the same HeapAgent session to another process.

In Win32, a DLL is mapped into the address space of the process that loaded it, and the DLL
operates on the heap of that process. As a result, there’s no reason to debug a DLL and its calling
process separately.

Using HeapAgent with DLLs
HeapAgent normally handles all DLLs in your application automatically. However, if your
application includes DLLs that share heap memory with your EXE, or if you want to debug a
dynamically loaded OCX or DLL but not the EXE that loads it, please read this section.

Handling DLLs that share heap memory with your EXE
If your application includes DLLs, you may need to have HeapAgent replace heap functions in
one or more of those DLLs as well as in your EXE. If any DLL allocates memory that is freed by
your EXE or another DLL, or if your DLL frees memory that was allocated by your EXE or
another DLL, then HeapAgent needs to replace the heap in the DLL as well as in your EXE.

You can use the HeapAgent Application Setup program to tell HeapAgent exactly in which DLLs
it should replace the heap and which DLLs it should skip. For more information, see
“Configuring HeapAgent for your application,” earlier in this booklet.

If HeapAgent encounters an unknown DLL for which it cannot find the memory management
functions and that you haven’t told HeapAgent to skip, HeapAgent displays a message box when
you try to run the application. The message box asks whether you want to add the DLL to the list
of DLLs HeapAgent skips in subsequent runs.

If you’re sure that the DLL in question does not share heap memory with your EXE or with other
DLLs:

♦ Choose Yes, and HeapAgent skips the DLL. In addition, HeapAgent adds the DLL to the list
of DLLs it skips automatically whenever you start an application for debugging with
HeapAgent.

If the DLL in question does share heap memory with your EXE or with other DLLs:

♦ Choose Cancel, and HeapAgent stops loading the DLL.

If the DLL shares heap memory, you must relink the DLL in one of the following ways so
HeapAgent can find symbols for memory allocation functions in the DLL:

♦ Link the DLL with Microsoft Visual C++ PDB debugging information, as described in
“Setting up your application for HeapAgent,” at the beginning of this booklet.

Or

♦ Link the DLL with the HeapAgent Library, also described in “Setting up your application for
HeapAgent.”

Or

♦ Link the DLL with the DLL version of the Microsoft Visual C++ runtime library:

Using HeapAgent with OCXs and dynamically loaded DLLs

Using HeapAgent with OCXs and dynamically loaded DLLs
If you’re using HeapAgent to debug an OCX or other DLL that is loaded with LoadLibrary,
you’ll need to follow the procedure outlined in this section.

HeapAgent performs patching of heap routines when the HeapAgent DLL is loaded into memory.
By default, it does not perform additional patching if an OCX or DLL is subsequently loaded with
LoadLibrary. To enable patching of LoadLibrary:

1. Add the following key to the Windows NT/Win2000/XP registry:
HKEY_CURRENT_USER\Software\MicroQuill\
HeapAgent\Apps\<app-name>

where <app-name> is the full path of your application’s EXE.

2. At the registry key that you added in step 1, add an entry with the following values:
• Value name: PatchDynamicDLLsOn
• Data type: REG_DWORD
• Value: 1 (one). A non-zero value means SmartHeap should LoadLibrary, and a

zero value means that SmartHeap should not patch LoadLibrary.

Note: When adding the registry key (step 1 above) Use forward slashes (/) as directory delimiters.
Backslash characters (\) are not legal in registry keys. For example, if your application's full path
is c:\apps\foo.exe and you want to skill DLL messages on just this EXE, you'ld add the registry
key: HKEY_CURRENT_USER\Software\MicroQuill\HeapAgent\Apps\c:/apps/foo.exe

In order for HeapAgent to automatically load when your DLL/OCX loads, you need to specify to
HeapAgent Application Setup the name of each EXE that will load your DLL/OCX.

To use HeapAgent with a dynamically loaded OCX/DLL:

1. Run HeapAgent Application Setup.

2. At Application Name, enter the full path of the EXE that you’ll use to load your OCX or DLL
during debugging.

If you don’t remember the name or location of an EXE, choose the Browse button, and
HeapAgent displays the Browse dialog box.

3. Choose the Add button, and the application is added to the list.

4. Choose the Edit button, and the Edit dialog box appears.

5. If you don’t want HeapAgent to debug the EXE that will load your DLL or OCX, uncheck
the Patch Heap Routines in Main EXE checkbox.

6. If you don’t want HeapAgent to debug the EXE that will load your DLL or OCX, move any
DLLs that appear in the Patch Heap Routines in These DLLs listbox to the Do NOT Patch
Heap Routines in These DLLs listbox, except those DLLs that are also used by your
OCX/DLL, if any.

 For example, while you’re debugging a Visual C++ OCX, that OCX will normally link with
the debug Visual C++ CRT and MFC DLLs. The application that loads your OCX (such as
Visual Basic or regsvr32.exe), on the other hand, will link with non-debug Visual C++
CRT and MFC DLLs. You would therefore want HeapAgent to patch the debug CRT/MFC
DLLs but not the non-debug CRT/MFC DLLs.

7. Choose OK to save your changes.

8. Repeat repeat steps 2 through 7 for each application that will load your OCX/DLL. If you’re
building an OCX using Visual C++ 4.0 or later, be sure to add regsvr32.exe because
Visual C++ will automatically run regsvr32.exe with your OCX during the build of your
OCX.

Specifying HeapAgent configuration for DLL components
You can use the HeapAgent Application Setup program to control whether and where HeapAgent
patches heap routines in an individual application.

First-chance exceptions reported by your debugger
When you run your application under both HeapAgent and your source debugger at the same
time, your debugger may report one or more first-chance exceptions in the HeapAgent DLL,
shw32d.dll. These exceptions are caused by HeapAgent’s address validation, which uses
Win32 structured-exception handling. The exceptions are handled by HeapAgent and are not
errors in your application or in HeapAgent.

First-chance exceptions reported by your debugger

815 6th Street South Suite 111 Kirkland, WA 98033 Phone: (425) 827-7200 Fax: (425) 650-7150 info@microquill.com

	Getting started with HeapAgent 10if you’re usingMicrosoft Visual Studio
	Read this first.
	Setting up HeapAgent and your application
	The basics
	Other options
	Setting up your application for HeapAgent
	Configuring HeapAgent for your applications (for all Visual Studio compilers)
	GUI applications
	Console applications
	Configuring HeapAgent
	When HeapAgent DLL auto-loading takes effect

	Running your application in HeapAgent
	Starting your application in HeapAgent
	Attaching HeapAgent to your application
	Detaching a program from HeapAgent
	Debugging multiple programs, processes, or instances simultaneously

	Using HeapAgent with DLLs
	Handling DLLs that share heap memory with your EXE
	Using HeapAgent with OCXs and dynamically loaded DLLs
	Specifying HeapAgent configuration for DLL components
	First-chance exceptions reported by your debugger

